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Abstract 
This paper describes a research program for the creation of a 
large-scale model of language comprehension for use in the 
development of language enabled intelligent agents. The 
language comprehension system is being implemented using 
the ACT-R cognitive architecture and modeling environment 
and adopts the cognitive principles and constraints of that 
architecture. The paper focuses on issues arising from the 
initial attempt to integrate the Cyc knowledge base into the 
language comprehension system as a means of scaling up the 
knowledge of the system to a size suitable for the 
development of intelligent agents. 

Introduction   
First Newell (1980, 1990) and more recently Anderson and 
Lebiere (in press) have argued that both a vast knowledge 
base and natural language are important components of any 
unified, integrative account of human cognition. It remains 
a serious challenge in the cognitive modeling and agent 
representation communities to incorporate both of these 
into synthetic human representations that are 
psychologically principled and practically functional. 

We are in the process of building a model of language 
comprehension that uses the ACT-R cognitive architecture 
and modeling environment coupled with the Cyc 
knowledge base to support the representation and 
processing of communications between synthetic agents 
and humans. The current version of the model (which does 
not yet integrate Cyc) is described in Ball (2003, 2004). 
Although the model is psycholinguistic in its theoretical 
orientation, it is intended to be a functional, large-scale 
model of language comprehension more in line with AI and 
Computational Linguistic approaches to Natural Language 
Understanding than typical computational psycholinguistic 
systems. To that end, we are investigating the possibility of 
integrating the large commonsense knowledge base 
provided in Cyc with the ACT-R implementation of the 
language processor.  In this paper we focus on the mapping 
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of Cyc terms and assertions to ACT-R declarative memory 
chunks and productions. 

Within the computational cognitive modeling 
community, there have been a few attempts to integrate 
large knowledge bases into computational cognitive models 
of language processing. Bruno Emond (personal 
communication) integrated WordNet into an earlier version 
of ACT-R. The NL-Soar group (Deryle Lonsdale, personal 
communication) integrated WordNet into a NLP system 
implemented in Soar. Unfortunately, these efforts are not 
well documented and the WordNet integrations are no 
longer available.  

Within the AI and Computational Linguistics 
community, there have been numerous integrations of large 
scale knowledge bases with language processing systems. 
The developers of Cyc have developed a commercially 
available language processing system which uses Cyc for 
its knowledge base. Many Computational Linguistic 
systems of language processing make use of large 
annotated corpora and knowledge bases (e.g. Nirenburg & 
Raskin, to appear; Wilks, Slator and Guthrie, 1996). Most 
of these integrations are engineering efforts and cognitive 
plausibility has not been a concern. As noted above, the 
focus of our research is on developing a large-scale 
language comprehension system, implemented in a 
cognitive architecture, and adhering to well known 
cognitive constraints on language comprehension. This 
difference in focus is a main reason we are not considering 
the wholesale adoption of any existing AI/Computational 
Linguistic systems, although our research is informed by 
such systems. 

Double R Model 
The model of language comprehension discussed in this 
paper is called Double R Model (Referential and Relational 
Model). In addition to being implemented in the ACT-R 
cognitive architecture and modeling environment, Double 
R Model is founded on the linguistic principles of 
Cognitive Linguistics (Langacker, 1987, 1991; Talmy, 
2001; Lakoff, 1987). Cognitive Linguistics is concerned 
with examining the relationship between form and meaning 



and argues against the existence of an autonomous syntactic 
component unlike Generative Syntax (Chomsky, 1965), 
which adopts the autonomy of syntax hypothesis and where 
form is studied in isolation from meaning. Double R 
Grammar is the Cognitive Linguistic theory underlying 
Double R Model. In Double R Grammar, the focus is on the 
representation and integration of referential and relational 
meaning—two key dimensions of meaning that get 
grammatically encoded. Double R Process is the 
psycholinguistic theory of language processing underlying 
Double R Model. Double R Process is a highly interactive 
theory of language processing which eschews a separate 
syntactic analysis feeding a semantic interpretation 
component in favor of a direct interpretation of the 
referential and relational meaning of input texts.   

Double R Model is currently capable of processing an 
interesting range of grammatical constructions including: 
intransitive, transitive and ditransitive verbs; verbs taking 
clausal complements; predicate nominals, predicate 
adjectives and predicate prepositions; conjunctions of 
numerous grammatical types; modification by attributive 
adjectives, prepositional phrases and adverbs, etc. Double 
R Model accepts as input as little as a single word or as 
much as an entire chunk of discourse—using the perceptual 
component of ACT-R to read words from a text window. 
Unrecognized words are simply ignored. Unrecognized 
grammatical forms result in partially analyzed text, not 
failure. The output of the model is a collection of 
declarative memory chunks that represent the referential 
and relational meaning of the input text.  The code for 
version 1 of the model is available on the Double R Theory 
web site at www.DoubleRTheory.com. 

ACT-R 
ACT-R is a cognitive architecture and modeling 
environment for the development of computational 
cognitive models (Anderson & Lebiere 1998). It is a 
psychologically based cognitive architecture which has 
been used extensively in the modeling of higher-level 
cognitive processes, albeit on a smaller scale than that 
typical of AI/Computational Linguistic systems (see the 
ACT-R web site at http://act-r.psy.cmu.edu/ for an 
extensive list of models and publications). ACT-R is a 
hybrid system that includes symbolic production and 
declarative memory systems integrated with sub-symbolic 
production selection and spreading activation and decay 
processes. Production selection involves the parallel 
matching of the left-hand side of all productions against a 
collection of buffers (e.g. goal buffer, retrieval buffer, 
visual buffer) which contain the active contents of memory 
and perception. Production execution is a serial process—
only one production is executed at a time. The parallel 
spreading activation process determines which declarative 
memory chunk is put in the retrieval buffer. ACT-R 
provides built-in support for single inheritance of 

declarative memory chunks and limited, variable-based 
pattern matching. Version 5 of ACT-R (Anderson et al., in 
press) adds a perceptual-motor component supporting the 
development of embodied cognitive models. 

All knowledge in ACT-R is represented as either 
declarative memory (DM) chunks or productions, both of 
which are symbolic. DM chunks are implemented using a 
frame-based representation consisting of chunk types, slots 
and values. Chunk types are named and may be organized 
into a single inheritance hierarchy which may have multiple 
roots (hence, multiple trees). Slots are named, but not 
typed. Slots are not organized into an inheritance hierarchy. 
Slot values may be typed chunks or strings. If the value is a 
chunk, that chunk participates in the inheritance hierarchy. 
Chunk types are defined before model execution. Instances 
of chunks of a given type may be defined statically before 
model execution or created dynamically during execution. 
It is a general principle of the ACT-R architecture that 
chunks should be limited to 3 or 4 slots containing 
embedded chunks for their values, consistent with 
psychological constraints on the ability to simultaneously 
entertain multiple chunks, although this principle is not 
enforced by the architecture. Unlike productions, DM 
chunks are not supposed to be directional and the spreading 
activation mechanism of ACT-R can activate chunks in 
declarative memory via their slot values as well as using the 
chunk type to support retrieval.  

In ACT-R, productions are procedural representations of 
skilled behavior that are not open to conscious reflection. 
They are symbolic, rule type structures with an antecedent 
and a consequent. The antecedent contains specifications 
that are matched against a collection of buffers containing 
DM chunks and perceptual information, and the consequent 
may alter the values of the slots in the DM chunks specified 
in the consequent or cause various actions to be performed. 
Typically, the antecedent of a production will match to the 
goal buffer, and optionally to the retrieval buffer, and/or 
one of the perceptual input buffers (e.g. visual buffer, 
auditory buffer). Variables are allowed in productions and 
can match to chunks, but variables cannot unify with other 
variables. Typically a variable in the antecedent matches to 
a chunk in one of the buffers, and a variable in the 
consequent matches to a chunk or the same variable in the 
antecedent. Variables are not allowed to be unbound across 
productions and must be instantiated within the production. 
Productions are inherently directional in ACT-R which uses 
a forward chaining inference method – i.e. the antecedent is 
always matched to the buffers during production selection 
and the consequent of the production is executed after 
selection.  

The directional nature of productions in ACT-R is 
supported by empirical evidence about how humans 
perform procedural tasks that are highly automated (i.e. 
performing an automated procedural task backwards is 
much slower and more error prone than performing the task 
in the normal direction). Productions tend to be highly 
specific to the task being performed, but the existence of 



generalized productions is not precluded. In the language 
comprehension system, generalized productions are used to 
effect default actions when no more specialized production 
matches the buffers. For example, there is a generalized 
production to retrieve the previously created DM chunk, if 
no other production matches the current buffer context.   

Cyc 
Before selecting Cyc as our primary knowledge base, we 
reviewed several ontologies that are published online, 
including Cyc, WordNet, Generalized Upper Ontology, and 
others, to evaluate their relative strengths for this effort.  Of 
the ontologies reviewed, Cyc and Wordnet had by far the 
largest number of elements defined or implemented. 
However, Cyc has the largest number (106) of axioms 
defined with the ontology’s concepts. Primarily for this 
reason, we selected Cyc for our project.  

Cyc is a very large general knowledge base of 
commonsense knowledge developed over much of the past 
20 years by Doug Lenat and his team at Cycorp in Austin, 
Texas (Minsky, 2003; Lenat, 1995). The initial motivation 
for the project was to facilitate the development of 
reasoning systems which were knowledge intensive. 
Knowledge is embodied within the Cyc ontology. 

The Cyc ontology has two fundamental expression types: 
terms and assertions. Terms can be either atomic 
(individual constants) or non-atomic (a function with 
arguments). Individual constants provide names for 
concepts and the relations between concepts. Functions 
allow for the automatic creation of many non-atomic terms 
such as (LiquidFn Nitrogen).  Terms categorize the stuff 
and things of everyday life such as dogs, weather, dates, 
ideas, people, etc. Terms can also be logical connectives 
such as and or implies. Terms are combined to make 
various types of assertions. The primary relational term in 
an assertion is the predicate. Predicates relate things or 
concepts to other concepts for example: (fatherOf Cain 
Adam). This relation asserts that Cain’s father is Adam. 
Predicates relate individuals to groups, classes to instances, 
opposites, generalizations, and others, for example: 
memberOf, isa, disjointWith, and  genls.  

Cyc makes no distinction between procedural and 
declarative knowledge, representing both as terms and 
assertions. The Cyc inference engine provides inferencing 
capabilities based on logic, unification, forward chaining 
(the default) and backward chaining (when specially 
invoked), combined with additional capabilities based on a 
large number of specialized heuristics. Because of its vast 
size, Cyc has microtheories to support locally (i.e. within a 
microtheory) consistent assertions, but potentially globally 
inconsistent assertions. 

Core Similarities and Differences 
Cyc was originally implemented using frames and 
subsequently converted to a logical representation when the 
frame based representation proved to be too awkward and 
inflexible (Whitten, 1995). In part, this stems from the 
inflexibility of embedding attributes within the slots of 
frames, where accessing the value of a slot requires access 
to the frame first. Logical representations do not have this 
limitation. The value of an attribute can be accessed 
directly, assuming the attribute is represented as a predicate 
and predicates are indexed for direct access. On the other 
hand, in a frame representation, once the frame is 
identified, the values of the slots can be retrieved without 
search. In a logical representation, the argument (i.e. the 
object) to which the predicate (i.e. attribute) applies must 
be indexed to avoid search. This can be expensive if 
multiple argument positions must be indexed. Note that 
implementations of Prolog (e.g. Quintus Prolog, Sicstus 
Prolog) often only index on the first argument of a 
predicate to avoid this expense, although Cyc indexes on all 
arguments. In ACT-R, although productions are explicitly 
directional, DM chunks are not meant to be. ACT-R 
provides sub-symbolic capabilities that mitigate the 
directional limitations of its frame based representations. In 
particular, the spreading activation mechanism of ACT-R 
allows the slot values of the DM chunk in the goal buffer to 
activate DM chunks in declarative memory with matching 
values, thereby providing an index-like capability to access 
DM chunks via their slots and not just via their chunk 
types.   

Both Cyc and ACT-R support inheritance, however, Cyc 
provides a multiple inheritance capability, whereas ACT-R 
only provides built-in support for single inheritance. As 
discussed below, this has important ramifications for the 
mapping from Cyc to ACT-R. 

From an object oriented programming perspective, 
neither ACT-R nor Cyc provide a mechanism for 
encapsulating methods within the DM chunks or terms that 
correspond most closely to objects. ACT-R provides an 
eval operator which makes it possible to insert lisp code 
into productions and Cyc provides an evaluationDefn 
predicate associated with functions that supports the 
inclusion of code to compute the function, but neither of 
these are encapsulated in the way typical of many object 
oriented systems. The slots in ACT-R’s DM chunks 
correspond to the data values encapsulated in objects, but 
the slots are not typed, although the DM chunks which are 
the values of the slots are typed. In Cyc even attributes are 
not encapsulated. Rather, they are specified external to the 
concept they are attributes of, with a pointer to the concept 
included as an argument of the predicate that specifies the 
attribute.   

Cyc was designed from the ground up with large-scale 
systems in mind. ACT-R was also designed to scale, but 



has primarily been used in the development of small-scale 
cognitive models. The serial implementation of the parallel 
spreading activation and production selection processes 
may limit the ability of ACT-R to scale to the size of the 
Cyc knowledge base. This may not be an issue so long as 
the full Cyc KB is not loaded into ACT-R at runtime.  

Cyc is a purely symbolic system. ACT-R provides sub-
symbolic spreading activation, production selection, and 
stochastic noise mechanisms. 

Cyc uses microtheories (for which ACT-R has no 
equivalent) to model large chunks of time, and has the 
dynamic event collections to support the modeling of 
dynamic events. ACT-R is inherently time dependent, but 
provides no means for reasoning about time. On the other 
hand, ACT-R has the capability to model the time course of 
cognition at the millisecond level. Cyc has built-in 
constraints on the duration of inferencing, but otherwise 
does not model the time course of cognition. 

Whereas ACT-R uses specialized productions and 
forward inferencing which is very efficient, but not general, 
Cyc relies on a generalized logic based inferencing engine 
(forward by default, but backward, as well) that is made 
more efficient via the use of heuristic rules. It is with 
respect to their inferencing capabilities that Cyc and ACT-
R differ most. 

Despite the differences discussed above, ACT-R and Cyc 
have much in common as knowledge representation 
systems and their integration is feasible and desirable given 
the objectives of this research. Both are essentially 
propositionally based systems of symbolic representation 
with ACT-R opting for frame based propositional 
representations and Cyc opting for predicate/argument 
based propositional representations. Neither provides 
imagistic representation or non-propositional spatial 
processing capabilities. 

Mapping Cyc’s Terms and Assertions to  
ACT-R’s DM Chunks and Productions 

Cyc terms may be straightforwardly mapped to ACT-R DM 
chunks. For example, the Cyc term PhysicalDevice (terms 
in Cyc are normally prefixed by #$, but the prefix is 
ignored below) can be mapped to the ACT-R DM chunk 
physicaldevice, where the DM chunk is defined by a chunk 
type definition that contains no slots. 

The mapping of Cyc assertions to ACT-R is more 
complicated. Consider the mapping of Cyc’s generalization 
(genls) and instance of (isa) assertions to ACT-R. One 
approach for mapping these assertions from Cyc to ACT-R 
would be to use ACT-R’s built-in single inheritance 
mechanism to replicate the Cyc knowledge structure of 
generalization/specialization, and instances of concepts. For 
example, in Cyc, the concepts of PhysicalDevice and 
Weapon are related as a generalization/specialization (i.e. 
weapon is a class that is a specialization of the physical 
device class), and Colt45Revolver is represented as an 

instance of Weapon (i.e. colt 45 revolver is an instance of 
weapon). Note that the distinction between specialization 
and instantiation is not always clear cut, however, 
instantiation is intended to cover the relationship between a 
class and an instance of the class, whereas, specialization is 
intended to cover the relationship between a subclass and a 
class. In Cyc language, this is written as follows: 
 

(genls  Weapon  PhysicalDevice) 
(isa  Colt45Revolver  Weapon) 

 
where genls stands for “generalization” and isa stands for 
“is an instance of” (with the more specific terms being 
listed first). The Cyc inferencing engine includes all the 
needed means for inheriting the attributes of parent 
concepts and for inferencing over these representations.  

Using ACT-R’s built-in single inheritance mechanism, 
these concepts could be defined as: 
 

(chunk-type (weapon (:include physicaldevice) … ) 
(colt45revolver isa weapon) 

 
where chunk-type identifies a chunk type (the basis for 
defining DM chunks in ACT-R)  :include indicates that 
weapon is a subtype of physicaldevice, … indicates that the 
chunk type may have additional slots defined as part of the 
chunk type frame. Once the chunk type is defined, 
instances of the chunk type (i.e. chunks) are defined using 
the isa chunk definition frame with colt45revolver naming 
the chunk and weapon identifying the chunk type. 
However, this mapping is problematic when a concept or 
object in Cyc inherits from more than one parent.  For 
instance, in Cyc, PhysicalDevice is a specialization of both 
Artifact and SolidTangibleProduct. There is no built-in 
facility in ACT-R to inherit from two parent chunk types 
(despite the fact that the underlying Common Lisp language 
supports multiple inheritance). Therefore, the definition of 
physicaldevice in ACT-R would require a choice to inherit 
from either the artifact chunk-type or the 
solidtangibleproduct chunk-type, somehow accommodating 
the other parent.  

Further, it is not clear that ACT-R’s built-in single 
inheritance mechanism is appropriate in any case. In the 
tutorial that is provided with ACT-R, Unit 1 contains a 
model of semantic memory that does not use the built-in 
single inheritance mechanism. Instead inheritance is 
implemented explicitly in the model. From a programming 
perspective, this makes model creation more difficult, but 
the computational cognitive modeler has full control over 
the implementation of inheritance. Further, the use of the 
built-in single inheritance mechanism circumvents the 
ACT-R architecture’s computation of cognitive processing 
time. That is, inferencing based on inheritance requires no 
cognitive processing time if the built-in inheritance 
mechanism is used. 

Given this, we are working toward a more general 
solution to the problem which does not use ACT-R’s built-



in single inheritance. Our method allows the relationship 
between physicaldevice and the more general concepts, 
artifact and solidtangibleproduct, to be defined as follows: 
 

(chunk-type genls-ct child parent) 
(achunk1 isa genls-ct child physicaldevice parent 
artifact) 
(achunk2 isa genls-ct child physicaldevice parent 
solidtangibleprodujct) 
 

In the chunk-type definition of genls-ct (i.e. generalization 
chunk type), the slots child and parent are defined. Then 
two chunks are defined to represent the child-parent 
relationships between physicaldevice and artifact and 
physicaldevice  and solidtangibleproduct. This approach 
will cover the genls assertions in the Cyc knowledge base. 
A similar chunk type definition and chunks can be used to 
cover Cyc’s isa assertions.   
 

(chunk-type isa-ct instance class)                  
(achunk3  isa   isa-ct    instance colt45revolver  class 
weapon) 
  

The primary chunk types and chunks currently envisioned 
are the relationships isa-ct, genls-ct [specialization], and 
property-ct plus the broad situation concepts action-ct, 
event-ct, process-ct, situation-ct, and state-ct. This 
approach with these primary chunk types will cover a large 
majority of the Cyc knowledge base.  

In general, there is a very direct mapping from Cyc 
assertions to ACT-R DM chunks for those assertions that 
are simple predicate/argument structures where the 
arguments are simple terms. However, Cyc allows for more 
complex assertions including logical operators which result 
in more complex structures. In Cyc, these complex 
assertions are referred to as rules and the mapping to ACT-
R is less straightforward. 

Automating the mapping of Cyc rules into ACT-R 
introduces additional considerations. Should they be 
mapped to ACT-R DM chunks or productions? If they are 
mapped to DM chunks, then the assertions may need to be 
mapped to multiple DM chunks and productions will be 
needed to support inferencing over them. If they are 
mapped to productions, the generated productions will 
require appropriate handling of the logical operators in 
those rules. For example, conjunctions could be handled by 
including multiple chunks in the slots of the goal template 
that is associated with a production for each conjunct. 
Disjunction could be handled by using separate ACT-R 
productions for each disjunct. Logical implication can be 
handled by the basic antecedent/consequent nature of ACT-
R’s productions. ACT-R also provides a negation operator 
to negate a production rule slot value that matches to a 
buffer and this could be adapted to handle logical negation. 
However, ACT-R provides no quantification capabilities, 
so additional productions and DM chunks will be needed to 
handle quantification. 

Besides the complexities in mapping Cyc rules to ACT-
R, a method for handling the mapping of Cyc functions and 
microtheories to ACT-R is yet to be developed.  

As the discussion above suggests, there are many subtle 
issues involved in the mapping of Cyc assertions to ACT-R 
DM chunks and productions, and fully automating this 
mapping will not be simple. However, if successful, we will 
be able to integrate the Cyc knowledge base with our ACT-
R based language comprehension system, providing a huge 
increase in the knowledge available to support language 
comprehension. 

Some Additional Considerations 
In their theory of sentence memory, Anderson, Budiu, and 
Reder (2001) adopt a representational system within the 
declarative memory component of ACT-R that contains 
only two types of chunks: nodes and links. Given only node 
and link chunks, the representation of a sentence like “Bob 
paid the waiter” necessarily consists of multiple chunks: 
node chunks to represent the individual words and phrases, 
and link chunks to represent the hierarchical structure of the 
sentence. The approach of Anderson et al. can be contrasted 
with a representational system in which a single chunk 
encodes the entire sentence (with the slots in the chunk 
containing the subcomponents of the sentence). Anderson 
et al. provide empirical support for their system of 
representation based on the fragmentary retrieval of parts of 
sentences in several memory retention studies.  

From the perspective of frame-based representations, 
limiting the possible types of “frames” (or chunks) to just 
nodes and links may appear highly constraining. However, 
nodes and links are the basic components of network 
representations, and network representations are a highly 
general form of knowledge representation. In restricting the 
possible frame types to nodes and links, what Anderson et 
al. have effectively done is implement a network 
architecture within the frame based architecture of ACT-
R’s declarative memory component.  

This network architecture resides within the over-arching 
ACT-R architecture and is influenced by that architecture in 
various ways. For example, ACT-R’s spreading activation 
mechanism can activate nodes and links independently of 
the structure that the nodes and links combine to form via 
addition of an index to each node and link chunk. Anderson 
et al. call this index the “context” slot and use it to tie the 
components of a linguistic representation together. If all the 
components of a linguistic representation have the same 
value for the context slot, they will all be activated (to some 
degree) by a goal chunk containing the index as one of its 
slot values. Thus, the entire linguistic representation can be 
activated in parallel even though there are multiple chunks 
involved. Note that it is also possible to add an index to the 
components of a single chunk corresponding to the entire 
sentence, thereby activating the components of that 
representation without having to traverse the representation. 



That is, combining an index with the spreading activation 
mechanism makes possible the activation of co-indexed 
chunks independently of any other structural organization. 
Thus, it is possible to combine a more structured frame-like 
representation with indexing/spreading activation as a way 
of providing alternative access to the components of a 
representation.   

Switching to another consideration, although Cyc is a 
huge knowledge base of commonsense knowledge, it turns 
out that Cyc lacks the domain specific knowledge needed 
for the initial application of the language comprehension 
model: pilot communication. Pilot communication is highly 
specialized and the brevity terms that pilots use have 
specialized meanings that are not captured in the Cyc 
knowledge base. Given this, a separate knowledge 
engineering effort is required to add the domain specific 
knowledge needed before intelligent agents capable of 
acting as pilots can be developed. And this requirement 
brings to fore the knowledge acquisition capabilities of 
Cyc. It has been our experience that the knowledge input 
capabilities of Cyc are difficult to use without extensive 
knowledge and experience with the Cyc knowledge base. 
Deciding where in the Cyc ontology to attach domain 
specific knowledge is an important and difficult decision to 
make, and we do not fully understand the consequences of 
that decision. Should our domain specific knowledge be 
encoded as a separate micro-theory to avoid conflicts with 
the existing ontology, or do we want to integrate the 
domain specific knowledge into an existing micro-theory?  
More generally, what is the appropriate level of granularity 
for micro-theories? These considerations are made even 
more controversial since we have no theory of the mapping 
of Cyc micro-theories into ACT-R. Can we use an indexing 
mechanism like that employed by Anderson et al. (2001) to 
tie the assertions in a micro-theory together, or will that 
lead to an undesirable proliferation of indexes to tie 
together representations at different levels of granularity? 

Summary 
We are attempting to integrate the Cyc knowledge base into 
ACT-R as a way of scaling up our language comprehension 
system for use in the development of language capable 
intelligent agents. With respect to the results of our effort, 
the jury is still out. We have defined the mappings needed 
to convert most of the terms and assertions in the Cyc 
knowledge base into ACT-R DM chunks and productions. 
However, Cyc does not provide the domain specific 
knowledge needed for our initial application and this 
domain specific knowledge will have to be manually added.  
Further, it is unclear how much of the knowledge that is 
provided in Cyc will prove necessary, given the specialized 
domain of our initial application. Despite these concerns, 
we are convinced that the development of functional 
language comprehension systems necessitates the 
integration of large sources of knowledge and Cyc is the 

largest such source currently available.  In this respect we 
agree with Feigenbaum (2004) and his assertion that the 
acquisition and integration of large amounts of knowledge 
are the keys to the development of intelligent systems, and 
we are intrigued by his suggestion that AI researchers focus 
on the development of systems capable of acquiring 
knowledge by reading texts as a way of overcoming the 
knowledge acquisition bottleneck. 

References 
Anderson, J. R., Bothell, D., Byrne, M.D., Douglass, S., 
Lebiere, C., & Qin, Y. (in press).  An integrated theory of 
the mind. Psychological Review. http://act-
r.psy.cmu.edu/papers/403/IntegratedTheory.pdf 
 
Anderson, J. R., Budiu, R., and Reder, L. (2001). A Theory 
of Sentence Memory as Part of a General Theory of 
Memory. Journal of Memory and Language, 45, 337-367. 
 
Anderson, J. R,. & Lebiere, C. (1998).  The Atomic 
Components of Thought.  Mahway, MJ: LEA. 
 
Anderson, J. R., & Lebiere, C. (in press). The Newell Test 
for a theory of mind. Behavioral and Brain Sciences. 
 
Ball, J. (2003). Double R Theory. 
www.DoubleRTheory.com 
 
Ball, J. (2004). A Cognitively Plausible Model of Language 
Comprehension. In Proceedings of the Thirteenth 
Conference on Behavior Representation in Modeling and 
Simulation. ISBN: 1-930638-35-3. Available on line at 
http://www.sisostds.org/conference/index.cfm?conf=04BRI
MS (04-BRIMS-015). 
 
Chomsky, N. (1965).  Aspects of the Theory of Syntax.  
Cambridge, MA: The MIT Press. 
 
Engelmore, R., and Morgan, A. eds. (1986). Blackboard 
Systems. Reading, Mass.: Addison-Wesley. 
 
Feigenbaum, E. (2004). Keynote address. Florida AI 
Research Society Conference. 
 
Lakoff, G. (1987).  Women, Fire and Dangerous Things.  
Chicago: The University of Chicago Press 
 
Langacker, R. (1987).  Foundations of Cognitive Grammar, 
Volume 1, Theoretical Prerequisites.  Stanford, CA: 
Stanford University Press  
 
Langacker, R. (1991).  Foundations of Cognitive Grammar, 
Volume 2, Descriptive Applications.  Stanford, CA: 
Stanford University Press. 
 



Lenat, D (1995). Cyc: A Large-Scale Investment in 
Knowledge Infrastructure. Communications of the ACM 
38:11. 
 
Minsky, M. (2003). “Why A.I. Is Brain-Dead.” At Wired 
Magazine online, Issue 11.08  
http://www.wired.com/wired/archive/11.08/view.html?pg=
3  
 
Newell, A. (1980). Physical symbol systems. Cognitive 
Science, 4, 135-183. 
 
Newell, A. (1990). Unified theories of cognition. 
Cambridge, MA: Harvard University Press. 
 
Nirenburg, S. & Raskin, V. (to appear). Ontological 
Semantics. Cambridge: The MIT Press. 
 
Talmy, L. (2003). Toward a Cognitive Semantics, Vols I 
and II. Cambridge, MA: The MIT Press. 
 
Whitten, D. (1995). Subject: [7] How does it work? 
http://www.robotwisdom.com/ai/cycfaq.html. 
 
Wilks, Y., Slator, B., & Guthrie, L. (1996). Electric Words: 
Dictionaries, Computers, and Meanings. Cambridge, MA: 
The MIT Press. 
 


